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A B S T R A C T   

The Government of India (GOI) announced a nationwide lockdown starting 25th March 2020 to contain the 
spread of COVID-19, leading to an unprecedented decline in anthropogenic activities and, in turn, improvements 
in ambient air quality. This is the first study to focus on highly time-resolved chemical speciation and source 
apportionment of PM2.5 to assess the impact of the lockdown and subsequent relaxations on the sources of 
ambient PM2.5 in Delhi, India. The elemental, organic, and black carbon fractions of PM2.5 were measured at the 
IIT Delhi campus from February 2020 to May 2020. We report source apportionment results using positive matrix 
factorization (PMF) of organic and elemental fractions of PM2.5 during the different phases of the lockdown. The 
resolved sources such as vehicular emissions, domestic coal combustion, and semi-volatile oxygenated organic 
aerosol (SVOOA) were found to decrease by 96%, 95%, and 86%, respectively, during lockdown phase-1 as 
compared to pre-lockdown. An unforeseen rise in O3 concentrations with declining NOx levels was observed, 
similar to other parts of the globe, leading to the low-volatility oxygenated organic aerosols (LVOOA) increasing 
to almost double the pre-lockdown concentrations during the last phase of the lockdown. The effect of the 
lockdown was found to be less pronounced on other resolved sources like secondary chloride, power plants, dust- 
related, hydrocarbon-like organic aerosols (HOA), and biomass burning related emissions, which were also 
swayed by the changing meteorological conditions during the four lockdown phases. The results presented in this 
study provide a basis for future emission control strategies, quantifying the extent to which constraining certain 
anthropogenic activities can ameliorate the ambient air. These results have direct relevance to not only Delhi but 
the entire Indo-Gangetic plain (IGP), citing similar geographical and meteorological conditions common to the 
region along with overlapping regional emission sources. 
Summary of main findings: We identify sources like vehicular emissions, domestic coal combustion, and semi- 
volatile oxygenated organic aerosol (SVOOA) to be severely impacted by the lockdown, whereas ozone levels 
and, in turn, low-volatility oxygenated organic aerosols (LVOOA) rise by more than 95% compared to the pre- 
lockdown concentrations during the last phase of the lockdown. However, other sources resolved in this 
study, like secondary chloride, power plants, dust-related, hydrocarbon-like organic aerosols (HOA), and biomass 
burning related emissions, were mainly driven by the changes in the meteorological conditions rather than the 
lockdown.   

1. Introduction 

The progression of air pollutants from their source to the receptor is 

governed by a multitude of transport processes (advective winds, 
convective updraft, or turbulent diffusion) and multiphase trans
formations. These transformations are often effected by chemical 
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reactions that lead to heterogeneous mass transfer, which further com
plicates the system. Thus the concentration of each pollutant is often 
dependent on the concentration of other pollutants through a series of 
chemical reactions (Seinfeld, 2004). Time-resolved measurements of the 
concentration and chemical composition of these aerosols provide 
valuable insights into the levels of air pollution (Fehsenfeld, 2004). 
However, measurements alone are limited in space and time and are 
unable to provide much information on the origin or source of these 
pollutants. This has led to the widespread use of various data analysis/ 
source apportionment techniques in the last few decades to extract more 
information on the nature and composition of emission sources (Watson 
and Chow, 2015). However, secondary pollutants display a highly non- 
linear relationship with precursor emissions; thus, source apportion
ment techniques are unable to provide any definitive information to 
predict the effect of increase/decrease of precursor emissions on sec
ondary pollutant concentrations (Burr and Zhang, 2011). 

The COVID-19 induced lockdown around different parts of the globe 
resulted in an unprecedented impact on the environment, with a drastic 
reduction in primary emissions; thus, enabling us to evaluate the impact 
of reduced precursor concentrations on primary and secondary aerosols, 
allowing us to better understand the dominant formation mechanism for 
a particular secondary pollutant in a given setting. The first lockdown 
was enforced in various parts of the Hubei province in China from 23rd 
January 2020, followed by similar measures in other cities (Wu et al., 
2020). The COVID-19 outbreak was declared to be a pandemic by the 
World Health Organization (WHO) on 11th March 2020 (Sohrabi et al., 
2020), following which lockdown or similar restricted movement mea
sures were implemented in almost every region across the globe, 
although with varying stringency (Oxford COVID-19 Government 
Response Tracker, 2020). 

An early study by Bao and Zhang (2020) analyzed the impact of 
reduced human mobility due to the lockdown on ambient air quality in 
44 cities in Northern China from January to March 2020. The study 
found the average AQI to decrease by 7.8%, while significant pollutants 
like SO2, PM2.5, PM10, NO2, and CO, decreased 6.76%, 5.93%, 13.66%, 
24.67%, and 4.58%, respectively. A consequent study by Li et al. (2020) 
utilized the Particulate Source Apportionment Technology (PSAT) 
coupled with the Comprehensive Air Quality Model with extensions 
(CAMx) to quantify contributions from 8 different sources to total PM2.5 
variations over the Yangtze River Delta (YRD) region, with the study 
period spanning 1st January to 31st March 2020 and the most stringent 
lockdown lasting from 24th January to 25th February 2020. Significant 
reductions in industrial operations, vehicular kilometers traveled (VKT), 
construction, and other anthropogenic activities were observed, in turn, 
bringing about a 25.4% to 48.1% decrease in PM2.5 concentrations at 
different sites over the YRD region. However, an average rebound of 
20.5% was recorded for ozone concentration. This anomaly was attrib
uted to the fact that a significant drop in the NOx concentration was 
observed (29.5% to 51.7%). At the same time, the reduction in VOC was 
not as intense as NOx leading to a drop in titration effect towards ozone 
(Seinfeld and Pandis, 2006). 

Such increase in regional oxidation capacity effected by the rise in 
ozone concentration due to decrease in NOx in a VOC-limited environ
ment during the lockdown was also reported by several other indepen
dent studies, such as Lv et al. (2020) for Beijing (China); Zheng et al. 
(2020) for Wuhan (China); Sicard et al. (2020) for Wuhan (China), Nice 
(France), Rome (Italy), Turin (Italy), Valencia (Spain); Tobías et al. 
(2020) for Barcelona (Spain); Mahato et al. (2020) for Delhi (India), 
Selvam et al. (2020) for Gujrat (India), Kumari and Toshniwal (2020) for 
Delhi (India) and Mumbai (India). 

In India, the nationwide lockdown was implemented on 24th March 
2020 and lasted up till 31st May 2020, with phase-wise relaxations 
starting 19th April 2020. Mahato et al. (2020) published an early work 
quantifying the impact of the first phase of the lockdown on ambient air 
quality in the Delhi-NCT region. The study reported average PM2.5 and 
PM10 concentrations to dip by 53% and 52% respectively when 

compared to the pre-lockdown, while SO2, NO2, CO, and NH3 were 
found to decrease by 18%, 53%, 30%, and 12%, respectively. Similar 
trends in PM2.5, SO2, NO2, and CO concentrations were observed inde
pendently by Srivastava et al. (2020) in both Lucknow and Delhi, by 
Kumari and Toshniwal (2020) in Delhi, Mumbai, and Singrauli, and by 
Selvam et al. (2020) in Gujrat. However, the reduction in SO2 was found 
to be more pronounced in Mumbai (39%) Gujarat (48%) and was 
attributed to their closeness to the ocean and, thus, shipping emissions 
by Selvam et al. (2020) and Kumari and Toshniwal (2020). 

Despite these early studies investigating the impact of the lockdown 
in India, there has been no study focusing on the variation of the sources 
and chemical composition of particulate matter during different phases 
of the lockdown or the impact of increased O3 concentrations on the 
sources of PM2.5. The present study is aimed at studying the highly time- 
resolved variation of sources contributing to both the organic and 
inorganic fragments of PM2.5 along with black carbon, from pre- 
lockdown through each phase of the lockdown. These results aid us in 
quantifying the impact that reduction of certain primary emissions can 
have on overall air quality and the inadvertent effect these reductions 
can have on secondary aerosols. This study also extends the double 
positive matrix factorization (PMF) methodology proposed by Petit 
et al., (2014) to account for elemental, organic, and black carbon frac
tions of PM2.5 in a single source apportionment analysis and utilize the 
elemental tracers to aid in understanding the source of organic aerosols. 

2. Experimental methods and data analysis 

2.1. Sampling site and instrumentation 

The sampling was conducted at the campus of Indian Institute of 
Technology (IIT), Delhi (28◦32′N; 77◦11′E). The instruments are housed 
in a temperature-controlled laboratory on the top floor of a four-story 
building on campus. The nearest source of local emissions is an arte
rial road outside campus, located about 150 m from the building. 

The nationwide lockdown was implemented in India for an initial 
period of 21 days, starting 25th March 2020 until 14th April 2020. The 
lockdown was extended for another 21 days until 3rd May 2020, with 
the first set of relaxations to certain agricultural and industrial activities, 
beginning 20th April 2020. Following the end of lockdown phase-2, the 
lockdown was further extended twice for a period of 14 days each, with 
increased allowances focused on restarting commercial activities before 
concluding on 31st May 2020. Further details about the allowances in 
each phase of the lockdown have been discussed in supplementary in
formation (SI) section 3. 

The study period has been subdivided into five phases, such that each 
subsequent phase coincides with increasing relaxations in the lockdown: 
Pre-Lockdown (PLD) (24th February – 24th March 2020), effective 
Lockdown Phase-1 (eLD-1) (25th March − 19th April 2020), effective 
Lockdown Phase-2 (eLD-2) (20th April – 3rd May 2020), Lockdown 
Phase-3 (LD-3) (4th May – 17th May 2020), Lockdown Phase-4 (LD-4) 
(18th May – 31st May 2020). 

The Xact 625i, XRF-based ambient metals monitor (Cooper Envi
ronmental Services, Tigard, Oregon, USA) equipped with a PM2.5 inlet 
was deployed for sampling and was set up to quantify 36 elements with 
an hourly time resolution. Meanwhile, an Aerosol Chemical Speciation 
Monitor (ACSM, Aerodyne Inc., MA, USA) was deployed for analyzing 
the non-refractory particulate matter with an aerodynamic diameter 
smaller than 2.5 µm (NR-PM2.5). The ACSM measured the concentration 
of organic aerosols along with sulfate, nitrate, ammonium (SNA), and 
chloride concentration, with a time resolution of ten minutes, averaged 
to an hourly time scale. Black Carbon (BC) concentrations were 
measured using a multichannel Aethalometer (Magee Scientific Model 
AE33, Berkeley, CA) with a 2.5 µm inlet cut and a 1-minute time 
resolution. 

Total PM2.5 was measured using a collocated Beta Attenuation 
Monitor (BAM 1022, MetOne Instruments Inc., OR, USA), with a 15-min 
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time resolution, due to technical difficulties faced during the lockdown, 
the data was only available for the PLD and LD-3 phase and is used for 
data quality assurance or quality control (QA/QC) purposes (Figure S1), 
Wind Speed (WS) and Wind Direction (WD) were calculated for the 
nearest grid point to the sampling site, using the Global Forecast System 
(GFS, NCEP, USA). Relative Humidity (RH), Ambient Temperature (AT), 
and rainfall were recorded using an onsite Ambient Weather Monitoring 
station. Ozone, SO2, CO, and NOx measurements were taken from the 
Continuous Ambient Air Quality Monitoring Station (CAAQMS) at RK 
Puram, located at a distance of around 3 km from our sampling site. All 
CAAQMS stations in Delhi, including the RK Puram station, are managed 
by either the Central Pollution Control Board (CPCB) or the Delhi 
Pollution Control Council (DPCC) and together provide a network of 
near-real-time monitoring of PM2.5 and PM10 levels, along with major 
gaseous pollutants. Further details on the instrumentation and QA/QC 
checks for each instrument are provided in SI section S1. 

2.2. Source apportionment using PMF 

This study utilizes Positive Matrix Factorization (PMF) (Paatero and 
Tapper, 1994) to apportion the measured particulate concentrations to 
realizable sources. PMF is a standard multivariate factor analysis tool 
widely used for source apportionment of aerosols (Sharma et al., 2016; 
Ulbrich et al., 2009; Vossler et al., 2016). The algorithm attempts to best 
describe the variability in a multivariate input dataset as the linear 
combination of a set of constant factor profiles and their relative 
contribution at every corresponding time step, as shown in Eq. (1): 

xij =
∑p

k=1
gikfkj + eij (1)  

Where xij is the measured elemental concentration, fkj is the factor/ 
source profile, gik the time-varying contribution of each source, and eij 

represent the elements of the residuals matrix. The indices i and j denote 
each of the n time steps and m chemical species, while k refers to each 
factor/source out of total p source profiles, which is defined by the user. 

In PMF, each element of the factor matrix is constrained that no 
sample can have a negative factor contribution. The solution to Eqn. (1) 
is achieved iteratively by minimizing the object function or the goodness 
of fit parameter known as Q value: 

Q =
∑

i

∑

j

(
eij

sij

)2

(2) 

Here, sij corresponds to the measurement uncertainty for every cell of 
the input matrix xij. The PMF algorithm was solved using the Multilinear 
Engine (ME)-2 (Paatero, 1999). In this study, the PMF algorithm was 
implemented using EPA PMF 5.0 that is built on the ME-2 solution 
model. A detailed description of the model is provided in past studies 
(Paatero, 1997; Paatero and Tapper, 1994). 

As discussed in section 1, the present study extends on the double 
PMF method, initially proposed by Petit et al. (2014). Petit and co- 
workers proposed to deconvolve the organic aerosol (OA) mass 
spectra using the routine PMF as described above, followed by a second 
PMF taking the deconvolved OA factors in conjunction with black car
bon and inorganic ions like sulfate, nitrate, and ammonium as input. In 
the present study, we follow the same steps as proposed by Petit et al., 
(2014); however, instead of the inorganic ions, we use the elemental 
measurements made by the Xact 625i in conjunction with black carbon 
measurements and deconvolved OA mass spectra, for input to the PMF at 
the second step. Further details on PMF input preparation, factor se
lection, and uncertainty quantification for both the routine PMF and the 
double PMF have been reported in SI section S2. 

3. Results and discussion 

The PLD phase in the present study marks the phase with no 
restricted movement, while eLD-1 corresponds to the phase with the 
most stringent lockdown. Consequently, the span of each phase from 
eLD-2 to LD-4 has been concomitant with increments in relaxations to 
the lockdown (resulting in increased commercial activity and human 
mobility) as implemented by the state/central government. 

Variation in instrument total PM2.5 and its constituents, along with 
the major gaseous pollutants for both during the lockdown in 2020 and 
the same period in 2019, is presented in Fig. 1 (a-d). The instrument 
total PM2.5 represents the sum total of the elemental, organic, and black 
carbon fractions of PM2.5 measured using Xact 625i, q-ACSM, and 
Aethalometer AE33, respectively. The instrument total PM2.5 includes 
the metals and chlorine measurements from the Xact, the organics and 
the inorganic ions (sulfate, nitrate, ammonium) from ACSM and BC from 
Aethalometer. The instrument total PM2.5 has been compared with total 
PM2.5 measured by a co-located BAM, and both have been found to have 
appreciable correlation (Pearson R > 0.91) and low residual mass (less 
than 10%) (Figure S1). Considering the temporal variation of PM2.5 
during the lockdown phases (Fig. 1(a)), we note that the average PM2.5 
values fall by 53.6% from PLD to eLD-1; this is in line with the findings of 
recent studies investigating the impact of the lockdown on PM2.5 levels 
in Delhi (Dhaka et al., 2020; Kumar et al., 2020; Mahato et al., 2020; 
Yadav et al., 2020). The PM levels trend back towards the initial con
centrations with increasing relaxations in subsequent phases of the 
lockdown; however, even during LD-4, average PM2.5 remained 33% 
lower compared to the PLD values. Considering the PM2.5 levels in 2019 
(Fig. 1(a)), we see that the average total PM2.5 during the time period 
corresponding to eLD-2 to LD-4 (April to May 2019) is lower than what 
is observed during February to March 2019, even without the lockdown. 
This variation observed in 2019 potentially stems from meteorological 
parameters like boundary layer height, temperature, and RH, varying 
across seasons or due to the seasonal nature of some emission sources. 
Comparing the PM levels in 2020 with the corresponding periods in 
2019; the average PM2.5 levels were lower in 2020 by 27.8%, 53.1%, 
36.8%, 34%, and18% for each of PLD, eLD-1, eLD-2, LD-3, and LD-4. 
These observations highlight the fact that any reduction during a lock
down phase in comparison with PLD cannot be attributed to as an 
impact of the lockdown alone, as that would undermine the inherent 
seasonal impact on the PM levels as observed for 2019. However, taking 
previous years’ levels as reference for reduction during the lockdown 
cannot be justified either, as it can be seen that the PM levels in 2020 
during PLD were ~28% lower compared to 2019; so while comparing 
with previous year levels may account for seasonal variation, it will 
discard any increase or decrease in source emission across the two years. 

Taking note of the temporal variation of the gaseous pollutants, a 
significant drop in NO2, NO, and CO concentrations 56%, 90%, and 32% 
(Figure S6(a)) respectively, was recorded during eLD-1 w.r.t PLD, while 
SO2 remains largely unaffected by the lockdown. Comparing the levels 
of gaseous pollutants during the lockdown with the levels in 2019 (Fig. 1 
(c) and Fig. 1(d)), SO2 in 2020 during the study period remains ~78% 
higher than the 2019 levels, reaching the highest in LD-4, where the 
average levels are around 2.8 times compared to the same period in 
2019. NO2 and CO are on average 60.5% and 67% lower than their 
average levels in 2019, with the lowest during eLD-1with ~73% 
reduction as compared to 2019, highlighting the impact of the lock
down. NO concentration levels during the study period when compared 
to 2019, are severely impacted by the lockdown, while the average 
concentrations in 2020 are 46% less than 2019 during PLD, the average 
levels are 93% lower in 2020 w.r.t 2019 during elD-1 to LD-4. Further 
discussion on time variations of these gaseous pollutants is presented in 
SI section 3.1.2. 

The effect of the lockdown on secondary aerosol formation is further 
analyzed using the Sulfate Oxidation Ratio(SOR) and Nitrate Oxidation 
Ratio (NOR) (Fig. 1(d)). The SOR and NOR are defined as the molar ratio 
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of SO4 and NO3 to total oxidized S (SO4 + SO2) and total oxidized N 
(NO3 + NOx), respectively (Zhang et al., 2011). The average SOR for the 
PLD was 0.26, followed by 0.1, 0.15, 0.13, and 0.1 for each of eLD-1 to 
LD-4, while the average NOR for the PLD was 0.12, followed by 0.07, 
0.1, 0.1, and 0.06 for each of eLD-1 to LD-4. According to previous 
studies, SOR and NOR lower than 0.25 and 0.10, respectively, are a 
marker for primary particulate matter (Ohta and Okita, 1990). Thus, the 
reduction in these ratios seems to indicate some role of lockdown in 
hindering the formation of secondary particles. However, contrary to 
the nature of total PM2.5 and gaseous pollutants, these ratios do not tend 
towards the PLD values; with increasing relaxations, these ratios achieve 
the lowest average values in LD-4. 

In Fig. 1 (d), we also note that the behavior of O3 doesn’t reconcile 
with the trend followed by total PM2.5 and other gaseous pollutants 
discussed above and are found to increase by 98%, 121%, 118%, and 
54% in each of eLD-1 to LD-4 w.r.t the PLD concentrations (Figure S6 
(a)). Similar, anomalies in terms of increase in ozone concentration 
following the lockdown have been observed in some recent studies, not 

only in India but also in different parts of China, France, Italy, and Spain 
(Sicard et al., 2020; Tobías et al., 2020; Zheng et al., 2020) and have 
attributed the increase in ozone to the reduction of NOx in a VOC-limited 
environment (Monks et al., 2015). This non-linear coupling between 
VOC, NOx, and O3 was originally discussed in an early study by Fin
layson-Pitts and Pitts (1993). However, it is also interesting to note that 
despite the increasing NOx concentrations in LD-4 and high O3 con
centrations during the same period, NOR remains 0.06, indicating low 
concentrations of particulate nitrate. The same scenario has been dis
cussed by Finlayson-Pitts and Pitts (1993), presenting the hypothesis 
that VOC and NOx compete for OH radicals for oxidation. When the VOC 
to NOx ratio increases (decreasing NOx at constant VOC), the oxidation 
of VOC is favored over NOx, resulting in lower nitrate concentrations. 
Similarly, for SO2 and associated lower sulfate indicated by low SOR 
despite high O3, gas-phase oxidation of SO2, similar to NO2, competes for 
the OH radical, while aqueous phase oxidation of SO2 is limited by the 
acidity of the reaction products, as this oxidation route is efficient only 
near neutral conditions (Wilson et al., 1972). Further discussion on the 

Fig. 1. Effect of the lockdown on gaseous pollutants and particulate matter, (a) Time variation of instrument total PM2.5 and its major constituents and its com
parison with PM2.5 levels during corresponding period in 2019 (Instrument Total PM2.5 = elemental PM2.5 (Xact) + SNA (ACSM) + Chloride (Xact) + Black Carbon 
(Aethalometer)); (b) Phase-wise composition of measured PM2.5; (c) Time variation of SO2, NO2, NO (top to bottom) in 2020 and 2019 for corresponding period; (d) 
Time variation of CO, O3 (at RK Puram and average for Delhi), SOR and NOR (top to bottom) in 2020 and 2019 for corresponding period. 
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variation of PM2.5, its constituents, and gaseous pollutants is presented 
in SI section S3.1. 

3.1. Source apportionment of elemental PM2.5 (measured using Xact 
625i) 

The elements measured using the Xact 625i were subjected to source 
apportionment using PMF. The input dataset was found to be best rep
resented by a seven factor solution namely, vehicular emissions, biomass 
burning, secondary chloride, Zn-K-Br rich, dust related, power plants 
and local coal combustion. As discussed in supplementary information 
section S2.1, measurements corresponding to only 16 elements out of 
the 36 elements measured by the Xact, were utilized for input to the 
elemental source apportionment (SA). It is important to note while the 
considered elements along with the organic and black carbon mea
surements present closure to total PM2.5 (SI S1), the limited no. of el
ements may limit our understanding of some of the sources resolved by 
elemental SA. Sources like secondary chloride are dominated solely by 
chlorine, while in case of the Zn-K-Br rich source, none of the dominant 
species point towards a specific emissions source. A greater number of 
elemental measurements in the future may add more meaning to the 
sources resolved in this study, by providing additional tracers. Also, it 
could potentially aid in further resolving factors like the Zn-K-Br rich 
factor taking advantage of more marker species. The sources corre
sponding to the apportioned factors were assessed based on the species 
dominating every factor profile. Each of the species was quantified in 
two ways: 

a) Based on the percentage of factor mass, given by the average con
centration of the species of interest divided by the sum of the average 
concentration of each species within the factor 

b) Based on percentage species across factors, given by the concentra
tion of the species of interest in the factor under consideration 
divided by the sum of the concentration of the same species across all 
factors. 

A detailed description of the resolved seven-factor solution (Fig. 2) is 
as follows: 

3.1.1. Vehicular emissions 
The vehicular emissions factor (Fig. 2(a)) was found to be dominated 

by S (36%) in terms of the % factor mass, followed by Cl (19%), K (17%), 
Fe (13%), Ca (7%) and Zn (6%) respectively in terms of the percentage 
factor mass. However, in terms of the percentage species across factors, 
vehicular emissions accounted for 60% of the total Mn content, followed 
by 33% of Ba, 30% of V, 22% of Zn, 15% of Ca, 13% of K, and 11% of S. 

Sulfur and Vanadium is known to occur naturally in crude oil; while 
pollution control measures have remained focused on reducing sulfur 
content in fuels, studies have pointed out the use of sulfur in engine oil 
anti-wear additives (Fitch, 2019). Multiple studies in the past have 
attributed Mn, Fe, Zn, and Ba to vehicular emissions, brake wear, and 
engine wear, in particular, recognizing them as abundant trace elements 
in brake pads and brake lining (Gianini et al., 2012; Grigoratos and 
Martini, 2015; Rai et al., 2020b; Thorpe and Harrison, 2008). Ti and V 
have also been attributed to brake and tire wear in some studies in the 
past (Gerlofs-Nijland et al., 2019). Potassium is noted to be used as an 
anti-freeze inhibitor and as an additive in engine oils. Also, K is known to 
be present in all unleaded fuels (Spencer et al., 2006). Calcium and 
Chlorine are known to be added to engine lubricants, Ca-compounds 
serves as a base to neutralize acids, while Cl-based additives act as dis
persants to retain dirt in suspension, to protect the engine (Dyke et al., 
2007; Lyyränen et al., 1999; Rudnick, 2017). 

In terms of the time variation (Figure S3(a)), this factor is signifi
cantly affected by the lockdown with a 96% reduction in average con
centration from PLD to eLD-1 (Figure S6(b)), the time series, and the 
composition pie-chart (Fig. 2(b)) show a steady rise in the concentration 

of this factor, while the factor concentration in phase-4 remains 70% 
lower than its pre-lockdown value. 

As an additional proxy, mobility trends (Google LLC, 2020) (Fig. 2 
(c)) quantifying the percentage change in transit station mobility w.r.t 
PLD, was compared with the time variation of this factor, and a signif
icant correlation (Pearson R = 0.81) between the two was noted. 

In addition to the characteristic species noted above, this factor 
displayed a sharp diurnal peak coinciding with the morning rush hour 
and evening rush hour (Figure S4) during PLD and LD-4, when there was 
comparatively normal traffic load. During eLD-1 to LD-3, the vehicular 
movement has remained extremely restricted; thus, no diurnality in 
traffic-related emissions was found. 

3.1.2. Biomass burning 
In terms of the % factor mass, the biomass burning factor (Fig. 2(a)) 

was dominated by K (36%), followed by S (27%), Cl (21%), and Si 
(12%), respectively. Looking into the percentage species across factors, 
biomass burning was found accountable for 75% of the total Se content, 
followed by 58% of K, 19% of Si, and 14% of S. 

Multiple studies across the globe have proposed the use of potassium 
as an elemental marker to identify biomass source profiles (Khare and 
Baruah, 2010; Pant and Harrison, 2012; Reche et al., 2012; Shridhar 
et al., 2010). Past studies have also reported Se to reach significant levels 
in biomass grown in selenium-rich soils (Goldstein, 2018), which in turn 
are common in northern India (Sharma et al., 2009). Silicon is known to 
be emitted from the pyrolysis of fibers in biomass like straw, cereal, and 
grass (Obernberger et al., 2006). Li et al. (2003) concluded that for fresh 
biomass burning plumes, most potassium exists as KCl, while in aged 
plumes, the chlorides are partly replaced by sulfates—thus providing 
evidence for high sulfur and chloride concentrations in conjunction with 
potassium in biomass associated source inventories. 

The average factor concentration is found to lower by 25% in eLD-1 
(Figure S6(b)); however, that may be a direct consequence of lower 
biomass burning emissions. Again it is not instinctive to assume any 
strong dependence of the lockdown event over biomass burning emis
sions. Thus it is difficult to ascertain whether the decrease in the con
centration stemmed from the lockdown. The concentration starts 
increasing in April and peaks in May, which also coincides with the 
wheat harvesting season, thus resulting in increased residual crop 
burning activities (Jethva et al., 2019). The factor time series was also 
compared with satellite-based fire counts (LANCE FIRMS, 2020) in a 
200 km radius of the sampling site (Fig. 2(d)), and a significant corre
lation (Pearson R = 0.71) was observed between them. 

3.1.3. Secondary chloride 
The Secondary Chloride factor (Fig. 2(a)) is solely dominated by 

chlorine in terms of factor mass, with Cl accounting for 98% of the factor 
mass. Also, in terms of % species across factors, secondary chloride 
contributes to 89% of total measured Cl and 27% of total Br. 

The diurnal variation associated with this factor (Figure S4) is very 
similar to that of NH4, with a sharp peak around 6:00 IST. This leads us 
to the possibility of this factor stemming from ammonium chloride. With 
lower saturation vapor pressure, ambient ammonia and HCl may 
condense in the particulate phase and vaporize back with an increase in 
saturation vapor pressure after sunrise. 

A similar factor from source apportionment of PM1 in Delhi was 
observed by Jaiprakash et al. (2017). It was suggested that HCl fumes 
transported from metal processing plants to the north-west of Delhi 
reacted with the high ammonia concentrations in Delhi to condense in 
the particulate phase (Warner et al., 2017). Similar conclusions were 
reached upon by Gani et al. (2019) for the high particulate chloride 
concentrations observed by them. 

The secondary chloride factor seems to have no dependence on the 
lockdown event as the average concentration of this factor increases 
marginally from PLD to eLD-1 (3.94–4 μg/m3) (Fig. 2(b)). 

From Figure S3(a), secondary chloride time series, we can note that 
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Fig. 2. Source apportionment results for elemental particulate matter: (a) resolved source/factor profiles; (b) phase-wise contribution of each factor to total 
elemental fraction of PM2.5; (c) Correlation of vehicular emissions with mobility trends (d) Correlation of biomass burning with fire counts. 
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almost all peaks for this factor correspond to a local wind direction in the 
sector of 302–333◦or NW direction. Also, the factor concertation is 
found to decrease noticeably in eLD-2 (1.25 μg/m3) and remain low in 
LD-3 (1.26 μg/m3) (Fig. 2(b)). This again seems to have a dependence on 
the wind direction, starting from the beginning of eLD-2 up till the 
middle of LD-3, a shift in wind direction towards the southeast can be 
noted. However, the wind direction again shifts to the northwest to
wards the end of phase-3, which marks the rise in the secondary chloride 
concentrations again. In addition to the dependence on wind direction 
the reduction in average particulate-bound chlorine concentrations from 
PLD to LD-3 (3.94–1.26 μg/m3), is also influenced by the rising ambient 
temperatures during the summer months (Figure S2), this is in line with 
the observations of past studies assessing the chloride levels in Delhi. 
(Gani et al., 2019; Rai et al., 2020a). 

It is important to take note that the diurnal behavior associated with 
this source (Figure S4), reassures the existence of chlorine in form of 
NH4Cl. Also, the dependence of this factor on the north-westerly winds 
as observed in this study, lend further support to the potential role of HCl 
fumes emitted in the north-west, neutralized by the high NH3 levels in 
Delhi, as proposed by Jaiprakash et al., (2017). The possible sources of 
Cl or Br emissions may include a variety of sources like waste burning or 
industries; however, to account for the lack of dependence of this factor 
on the lockdown and following relaxations, the source of HCl/HBr must 
also remain unaffected/minimally affected by the lockdown. 

3.1.4. Zn-K-Br rich 
In terms of % factor mass, this factor is mainly composed of Zn 

(42%), K (40%), and Fe (11%). However, in terms of % species across 
factors, these factors contribute to 68% of total Zn, 38% of total Br, and 
16% of K (Fig. 2(a)). 

Multiple studies in the past have attributed a Zn-dominated factor to 
waste incineration (Gupta et al., 2012; Julander et al., 2014; Parekh 
et al., 1967; Sweet et al., 1993). These studies have mainly been asso
ciated with electronic or municipal waste burning, where a halide cat
alyzes the volatilization of metals to form metal halogenides, usual 
metals related to waste incineration in addition to Zn, include K, As, Fe, 
and Pb. While Cl is a more abundant halide, but Vehlow et al. (2003) 
have discussed how Br may be high in plastics containing flame re
tardants and, in turn, drive the volatilization of heavy metals like Zn Fe 
and As. However, Zn and As have also been attributed to iron/steel in
dustries and waste incineration (Duan and Tan, 2013). Also, past studies 
have attributed Zn-Pb-Cl to industrial emissions (Bullock and Gregory, 
1991). 

This ambiguity in the published literature regarding tracer for waste 
incineration/industrial activities has lead us to define this factor as a Zn- 
K-Br rich factor only. In terms of the time variation (Figure S3(a)) the 
factor in line with total PM2.5 decreases by 42% in eLD-1 w.r.t pre- 
lockdown, followed by 85%, 54%, and 50% in each of eLD-2 to LD-4 
w.r.t PLD concentrations (Figure S6(b)). 

3.1.5. Dust related 
The predicted dust-related source profile (Fig. 2(a)) is dominated by 

Si, accounting for 48% of the factor mass, followed by 22% and 20% of 
the factor mass for Ca and Fe, respectively. In terms of % species across 
factors, dust-related source accounts for 84% of total Sr, 80% of total Si, 
76% of Ca, 68% each of Ti and V, 55% of Fe, and 37% of Mn. Each of the 
above-noted species has been extensively used as tracers for road dust/ 
crustal elements in multiple studies across the globe (Gupta et al., 2007; 
Kothai et al., 2011; Rai et al., 2020a; Sharma et al., 2016; Sun et al., 
2019). 

In terms of the time variation (Figure S3(a)) of this factor, there 
seems to be no observable effect of the lockdown on dust-related par
ticulate matter. However, we observe a significant correlation of the 
factor concentration with ambient temperature (Pearson R = 0.64) 
(Figure S2(a)) and an inverse correlation with RH (Pearson R = -0.67) 
(Figure S2(a)), which is in agreement with several past studies (Csavina 

et al., 2014; Jayamurugan et al., 2013). Also, during LD-4, we observe an 
increase in the average concentration of this factor, from 1.15 μg/m3 in 
LD-3 to 2.77 μg/m3 in LD-4 (Fig. 2(b)), which may be influenced by 
multiple meteorological parameters like WD, WS or gust events. 

3.1.6. Power plants 
Considering the % factor mass, sulfur solely dominates this factor 

profile accounting for 93% of the total factor mass. In terms of the % 
species across the factors, the power plants factor contributes to 73% of 
the total sulfur, 35% of As, and 32% of total Ba (Fig. 2(a)). 

In this study, the power plants factor (Figure S3(a)) displays a sig
nificant correlation with the SOR (Fig. 1(d)) (Pearson R = 0.922), 
signaling towards the sulfur content in the particulate phase is actually 
in the form of aqueous sulfate. Also, past studies evaluating power plant 
emissions as well as source apportionment studies have highlighted the 
use of As and Ba as tracers for coal-based power plant emissions (Reddy 
et al., 2005; Zhao et al., 2017; Zoller et al., 1974). 

Observing the time series of this factor, we do note a 65% decrease in 
eLD-1 w.r.t the PLD concentrations (Figure S6(b)). A recent report from 
the Power System Operation Corporation (POSOCO, 2020) does indicate 
a significant reduction (44% reduction in April compared to last year) in 
the power demand due to the closure or scaled-down operations in 
almost all industries due to the lockdown, which in turn could lead to 
temporarily scaled down operations at some power plants. Thus, some 
order of reduction in source emission can also be partially responsible 
for the significant drop observed in the factor concentration at the 
receptor. 

However, it would be implausible to attribute the entire reduction to 
the lockdown alone, as there has been significant variation in the factor 
concentration within the PLD (− 54% to +89% w.r.t PLD average) 
(Figure S6(b)), indicating some role of meteorological or other transport 
variables rather than the source emission alone for the variation in the 
concentration. Again, during eLD-2, the average concentration is found 
to increase relative to PLD levels; however, the concentration again 
starts to fall during LD-3 and LD-4, thus advising of some external 
metrological/transport phenomena affecting the concentration values. 

3.1.7. Local coal combustion 
The coal combustion factor (Fig. 2(a)) is dominated by Lead, Zinc, 

and Sulfur accounting for 66%, 21%, and 8.5% of the total factor mass, 
respectively. Considering the % Species across factors, coal combustion 
is responsible for 87% of Pb, 18% of Se, 16% of As, and 9% of Zn. While 
coal combustion is found to account for only 0.3% of total sulfur, it is 
essential to note that the % contribution of this factor to elemental PM2.5 
has remained quite low (less than 1.9%) throughout the study period. 

As and Se have been widely used as markers for coal combustion 
(Gupta et al., 2007; Hien et al., 2001; Lee et al., 2008; Sharma et al., 
2007). Zn again has been used as a marker for coal combustion in India 
due to relatively higher Zn content in Indian coals (Almeida et al., 2006). 
While commercially available coal has lower Pb content, Negi et al. 
(1967) reported the higher concentrations of Pb and Zn in domestic soft 
coal. It is also important to note that domestic Indian coals have been 
found to have low sulfur content (less than 0.6% by mass), with an 
exception to coal deposits in north-eastern India with high sulfur content 
(Chandra and Chandra, 2004; Sarkar, 2009). Also, past studies have 
reported Indian power plants to utilize blends of imported and domestic 
coals supporting the higher sulfate emissions from power plants (Central 
Electricity Authority, 2012; Chandra and Chandra, 2004). 

Evaluating the temporal variation associated with this factor 
(Figure S3(a)), we notice that the lockdown implementation brings 
about a 95% reduction in the average concentration of the coal com
bustion source, comparing eLD-1 to PLD conditions. With increasing 
relaxations, the percentage reduction in average concentration w.r.t the 
PLD falls to 90% in eLD-2 and LD-3 and finally 85% in LD-4 (Figure S6 
(b)). 

Since the source profiles and supporting literature indicate domestic 
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soft coal burning, the real-world sources may be connected to small scale 
industrial setups, eateries, or household usage of domestic grade coal, 
and such sources appear to be drastically affected by the lockdown and 
display only a marginal increase in emissions even with increasing re
laxations. Such a variation could possibly stem from the massive outflow 
of migrant laborers from the NCT region, resulting in the sudden 
downfall of domestic coal usage for cooking purposes (Roy and Agarwal, 
2020). 

3.2. Source apportionment of organic aerosols (measured using Q-ACSM) 

The organic content of the total PM2.5 mass is subjected to source 
apportionment using PMF. A six-factor solution was found to fit the 
input data best. The apportioned factors were identified by the mass 
spectra signatures, their correlation with tracers, and their diurnal 
behavior (Ulbrich et al., 2009; Zhang et al., 2005b). The present study 
further correlates each apportioned factor to corresponding reference 
factor profiles from Ng et al. (2011). Fig. 3 presents the predicted mass 
spectra for each profile, along with their temporal variation and corre
lation with external markers. The detailed description of each predicted 
source profile is as follows: 

3.2.1. Semi-volatile oxygenated organic aerosol (SVOOA) 
The factor profile, as seen in Fig. 3(a), is characterized by a signifi

cant peak at m/z 43, which is a characteristic of less oxidized secondary 
organic aerosol (Li et al., 2019; Zhu et al., 2018). The diurnal variation 
(Figure S5) of this factor presents two peaks: early morning (6:00 – 9:00 
IST) and a weaker peak at midnight, signaling SVOOA concentrations to 
be affected by photo-oxidation of fresh emissions (morning peak) along 
with boundary layer height (midnight peak), similar to observations 
made by Chakraborty et al. (2018). The SVOOA source profile predicted 
from the PMF analysis was noted to have a Pearson R correlation of 0.93 
with the reference SVOOA profile from Ng et al. (2011) 

The SVOOA factor time series displayed a strong correlation with 
NO3 (measured using ACSM) (Pearson R = 0.95) (Fig. 3(c)), which is in 
agreement with the trend reported in past studies (DeCarlo et al., 2010; 
Dzepina et al., 2009; Volkamer et al., 2006), and is attributed to the 
analogous semi-volatility of SVOOA and nitrate resulting in similar gas- 
particle partitioning. 

The SVOOA factor drops significantly (86%) after the lockdown is 
implemented; the emissions increase with increased relaxations from 
eLD-2 to LD-3; however, there is a small drop (18%) in average con
centration again from LD-3 to LD-4 (Figure S6(c)). 

3.2.2. Hydrocarbon-like organic aerosol (HOA) 
Alkyl fragment signatures distinctly mark this factor profile (Fig. 3 

(a)) with prominent contributions from m/z 55 and 57 (Aiken et al., 
2009; Ng et al., 2011). The resultant HOA profile has a strong correlation 
(Pearson R = 0.95) with reference HOA spectra from Ng et al. (2011). 

Past studies have found HOA to correlate well with black carbon (BC) 
(Mohr et al., 2009; Sun et al., 2016). In the present study, we note an 
excellent correlation between BC and HOA (Pearson R = 0.96) (Fig. 3 
(c)) during the PLD phase; however, post-lockdown, the trend of BC and 
HOA become completely disparate, resulting in a negligible correlation 
between the two. The significant correlation with BC often is taken as 
support for the vehicular origin of HOA (DeWitt et al., 2015). 

However, from section 3.1.1, we note the vehicular emissions to drop 
significantly post-lockdown (96%) while HOA concentrations lower 
only by 14% post-lockdown. At the same time, it departs from the trend 
followed by BC (Fig. 2(d)), indicating that during the lockdown, HOA 
originates from a source other than vehicular emissions. This unchar
acteristic loss of correlation with BC and the potential sources supple
menting HOA during the lockdown will be investigated further in 
section 3.3. 

The initial studies that looked into the deconvolution of HOA from 
POA (Zhang et al., 2005a) suggested its connection to vehicular origin 

based on the significant correlation with vehicular markers like NOx and 
BC and the fine mode of particulate matter corresponding m/z 55 and 57 
as compared to m/z 44 which grows larger while aging. Zhang et al. 
(2005a) also discussed car-chaser and lab-based studies, wherein both 
diesel emissions and lubricant combustion resulted in HOA like spectra, 
as heavy oils, lubricants, cooking oils are known to correspond to m/z 
55, while mass spectra associated with gasoline and diesel-like fuels 
displayed a more definite m/z 57 peaks. 

Hao et al. (2014) also observed appreciable HOA contributions in a 
low-traffic village setting. They attributed the source to be a combina
tion of industrial, cooking, and biomass burning along with the low 
contribution from traffic. 

Thus, it may be hypothesized that either HOA during the lockdown 
originates from diesel/lubricant based emissions from sources other 
than vehicles, like diesel-based generators in industries or cooking- 
related activities. However, similar to SVOOA, even HOA experiences 
a sharp reduction towards the end of LD-4. The potential causes of this 
erratic behavior would be investigated further in section 3.3. 

3.2.3. Biomass burning organic aerosol (BBOA-1 and BBOA-2) 
In the present study, we resolve two separate biomass burning 

related factors (Fig. 3(a)). However, BBOA-1 can be categorized as a 
fresh/ primary emission, with its mass spectra highly correlated to the 
BBOA profile from Ng et al. (2011) (Pearson R = 0.937). For the other 
BBOA profile, i.e., BBOA-2, we observe enhanced concentrations of m/ 
z43 and m/z 44, indicating that BBOA-2 is relatively aged. Also, the 
diurnal variation (Figure S5) associated with BBOA-1 displays primary 
emission like behavior, with early morning peaks, while BBOA-2 also 
displays peaks around noon, which is a characteristic of m/z 44 or CO2

+, 
indicating the possibility of regionally transported emissions responsible 
for BBOA-2. 

BBOA-2 also shares a good correlation with the Ng et al. (2011) 
reference BBOA profile (Pearson R = 0.82). Both BBOA-1 and BBOA-2 
are marked by intensified peaks corresponding to m/z 60. Levogluco
san is known to be proportional to C2H4O2

+ (a fragment at m/z 60) is 
extensively used as a marker for biomass burning in AMS-based studies 
(Aiken et al., 2009). 

It is also important to note that while both the BBOA factors present a 
good correlation with the reference BBOA profiles, these factors profiles 
do share similarities with Coal Combustion Organic Aerosol (CCOA) 
detected by multiple studies in the past (Huang et al., 2014; Zhu et al., 
2018). However, resolving the CCOA profile during ambient sampling is 
often contingent upon tracer fragments like PAHs and C6H10O+ and 
heavier m/z’s (Lin et al., 2017), which can be measured using the HR- 
ToF-AMS or ToF-ACSM. Since, the present study utilizes a q-ACSM 
limiting the m/z spectra to 120, the BBOA factors may have a trace or 
high contributions from CCOA factor that cannot be resolved with cer
tainty with the single PMF due to lack of tracer ions. Past studies have 
also noted that splitting of factors, in absence of strong tracers, is most 
likely a mathematical artifact rather than a true component (Ulbrich 
et al., 2009). Nevertheless, the potential association of the BBOA factors 
with coal combustion or related activities, is further investigated in 
section 3.3 using double PMF and elemental tracers. 

Similar to the biomass burning factor in section 3.1, it is not intuitive 
to presume an effect of the lockdown on biomass burning. However, 
comparing the two BBOA factors, we see that BBOA-1 displays higher 
concentrations in pre-lockdown, while reduced order (76%) values 
following lockdown steadily rise from eLD-1 to LD-3. BBOA-2 displays 
lower concentrations in the PLD period and steadily rise to a maxima 
(5.1 μg/m3) up till LD-3 (Fig. 3(b)). Thus, indicating that while the 
lockdown leads to a decrease in the primary BBOA emissions (BBOA-1), 
it in some way enhances the regional transported/aged fraction of BBOA 
(BBOA-2). However, similar to both SVOOA and HOA, both BBOA fac
tors significantly reduce both in absolute concentration and percentage 
contribution in LD-4 (Figure S3(b) & Fig. 3(b)). 

Interestingly none of the BBOA factors display any positive 
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Fig. 3. Source apportionment results for organic particulate matter: (a) resolved source/factor profiles; (b) phase-wise contribution of each factor to total organic 
aerosol; (c) correlation of factors with external markers. 
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correlation or similar trend with the satellite-based fire counts (LANCE 
FIRMS, 2020) (Fig. 3(c)), which was seen in the potassium dominated 
biomass burning factor in section 3.1 and neither with the biomass 
burning factor resolved from elemental SA. 

A potential contributing factor to this discrepancy may stem from the 
stance that the tracers used to resolve these factors, i.e., m/z 60 and K+, 

point to different types of combustion processes. A study by Brown et al. 
(2016) presented a comparison between different biomass burning 
markers like K+, BC, and levoglucosan or, in turn m/z 60. It was noted 
that K+ and BC are more prominent products in flaming combustion 
(which is usually captured as fire counts). However, levoglucosan is a 
more prominent emission in the case of smoldering combustion (Lee 
et al., 2010). 

Another probable cause may be that BBOA emissions can be associ
ated with multiple sources and may not yield a good correlation with a 
single K+ resolved biomass burning source alone, rather a combination 
of sources. This possibility is investigated further in section 3.3. 

3.2.4. Low volatile oxygenated organic aerosol (LVOOA-1 and LVOOA-2) 
LVOOA is addressed as an aged or oxidized aerosol and is majorly 

marked by a distinct peak of m/z 44 or CO2
+. In this study, we resolve two 

LVOOA factors (Fig. 3(a)), i.e., LVOOA-1 and LVOOA-2. Both the 
LVOOA factors display a strong correlation with the Ng et al. (2011) 
reference spectra (Pearson R = 0.95, 0.93 for LVOOA-1, and LVOOA-2, 
respectively). 

Observing the temporal variation, we see that LVOOA-2 is at a high 
concentration (9.1 μg/m3), which reduces after the lockdown (2 μg/m3) 
and steadily rises to a noticeably high concentration in LD-4 (12.3 μg/ 
m3). On the other hand, LVOOA-1 mostly remains at a lower concen
tration from PLD to LD-3 (from 2 μg/m3 to 4 μg/m3); however, it rises to 
a significant concentration in LD-4 (10.6 μg/m3) (Fig. 3(b)). It is 
important to note that all apportioned organic factors decrease consid
erably in LD-4, while both the LVOOA factors experience a significant 
rise. 

LVOOA is known to correlate well with sulfate, citing the similar 
low-volatility observed in both species (Zhu et al., 2018). In Fig. 3(c), we 
see that LVOOA-1 neither follows the trend nor is correlated to sulfate, 
whereas LVOOA-2 expresses a significant correlation with sulfate 
(measured using ACSM) during PLD (Pearson R = 0.93) and continues to 
display a significant correlation up till LD-2 (Pearson R = 0.75); how
ever, the correlation significantly deteriorates in LD-4. The decreased 
correlation with sulfate may point towards a change in source contrib
uting to LVOOA-2 in LD-4, which will be investigated further in section 
3.3. 

Investigating the diurnal variations associated with both factors 
(Figure S5), we see that LVOOA-2 displays a flat diurnal profile with a 
marginal peak at noon, which is characteristic of CO2

+ formation by 
photochemical oxidation. However, if we look at the phase-wise diurnal 
variation, the diurnal profile for LVOOA-1 in lockdown phase-4 behaves 
like a primary pollutant diurnal with an early morning peak rather than 
the afternoon peak, suggesting a primary aerosol-like formation mech
anism for LVOOA-1. 

Earlier in section 3, we noted low SOR and NOR values, which 
usually correspond to primary rather than secondary aerosols. We must 
also take into account that LD-4 began right after the period when ozone 
had reached its peak concentrations (section 3.1.2). 

All these facts taken collectively indicate that in some way, all pri
mary and intermediate organic aerosols are chemically aged in the 
presence of high O3 to form LVOOA, leading to a reduction in all other 
organic factors and a significant rise in LVOOA. Jimenez et al. (2009), on 
a similar note, stated that the atmospheric oxidation of organic aerosol 
(OA) converges to LVOOA regardless of the original OA source. How
ever, it is also important to note that the diurnal variation of LVOOA-1 
hinted towards its primary emissions. Another study by Liggio and Li 
(2013) suggested a mechanism for the formation of oxygenated primary 
organic aerosols by uptake of primary oxygenated organic gases to 

aerosols, and thus presents a possible explanation for the primary rather 
than secondary origin of LVOOA-1. 

3.3. Combined source apportionment of elemental PM2.5, black carbon, 
and organic PM2.5 

In this section, we further resolve the sources of organic aerosols and 
interpret them better using elemental markers measured using the Xact 
625i. We subject the elemental PM2.5 and black carbon measurements 
from the Xact 625i and Aethalometer, respectively, along with the 
organic aerosol factors resolved in section 3.2, to source apportionment 
using PMF. As discussed in section 2.2 and in further detail in SI section 
S2.1.1, our efforts build upon the work of Petit et al., (2014), which 
introduced the double PMF methodology initially. While sections 3.1 
and 3.2 have elucidated the impact of the lockdown on the elemental 
and organic fragments of PM2.5 separately, this section gives a broader 
picture of the impact of the lockdown on sources encompassing both the 
organic and elemental fragments of PM2.5 along with black carbon. This 
section also bridges the organic aerosol factors apportioned in section 
3.2 to more realistic real-world sources, using elemental tracers. The 
implementation of the double-PMF is discussed in SI S2.2 and in greater 
detail in Petit et al., (2014) 

The double-PMF analysis results in nine source profiles, i.e., vehic
ular emissions, biomass burning, secondary chloride, Zn-K-Br rich, dust- 
related, power plant, local coal combustion, combustibles factor (CF-1), 
and LVOOA dominated that is found to best explain the variability of the 
input dataset. The results of the double-PMF analysis are presented in 
Fig. 4; the resolved source profiles as seen in Fig. 4(a) highlight the fact 
that seven (vehicular emissions, biomass burning, secondary chloride, 
Zn-K-Br rich, dust-related, power plant, local coal combustion) out of the 
nine resolved factors are extremely similar to the 7-factor solution 
resolved from the elemental source apportionment in section 3.1. The 
elemental fraction of the double-PMF resolved sources are found to have 
an appreciable correlation (Pearson R > 0.9) with their counterparts in 
the elemental-PMF sources, and the same has been utilized to name the 
double PMF factors. The remaining two factors are dominated by the 
factors resolved in organic source apportionment instead of the 
elemental tracers and are named accordingly. 

3.3.1. Vehicular emissions 
In addition to being marked by high concentrations of S, K, Fe, and 

tracers like Mn and Zn, as seen in the elemental SA factor, the double 
PMF apportions 35% HOA, 33% BC, and 18% SVOOA to vehicular 
emissions. As discussed in section 3.2.2, the temporal variation of HOA 
was well correlated with BC during PLD but deviated from the trend 
followed by BC post-lockdown. The temporal variation of vehicular 
emissions source (Fig. 4(b)) and the fractional contribution of the 
vehicular emissions source to the BC and HOA time variation (Fig. 4(c)) 
supports the vehicular origin of HOA and BC during PLD and LD-4, thus 
explaining the good correlation during those periods and also justifying 
the observed loss of correlation, from eLD-1 to LD-3 when the vehicular 
emissions fall down and no longer remain a major contributor to BC or 
HOA. 

3.3.2. Biomass burning 
In line with its counterpart resolved through elemental source 

apportionment discussed in section 3.1.2, the double PMF resolved 
biomass burning source is marked by the high levels of K, S, Cl, and Se. 
Considering the organic SA factors, 40% of LVOOA-2, 35% of BBOA-2, 
19% of BC, and 11% of SVOOA have been apportioned to the biomass 
burning source. As discussed in section 3.2.4, both apportioned LVOOA 
factors were found to increase in LD-4, which in turn also saw a rise in 
fire counts and biomass burning factor resolved by the elemental SA. A 
substantial part (40%) of LVOOA-2 being apportioned to double PMF 
biomass burning factor highlights the contribution of the biomass 
burning related activities in the rise of LVOOA-2 during LD-4. This 
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impact can be clearly observed in Figure (4(c)), where biomass burning 
emissions are the major contributor towards LVOOA-2 during LD-3 and 
LD-4. It is also interesting to take note that while the BBOA-2 factor as a 
whole didn’t present an appreciable correlation to elemental SA biomass 

burning factor, the double PMF connects the biomass burning activities 
marked by potassium tracers to contribute to a significant fraction, i.e., 
35% of relatively aged BBOA or BBOA-2 on an average and can be 
clearly seen to dominate the BBOA-2 temporal variation during LD-3 

Fig. 4. Organic-Inorganic coupled source apportionment: (a) resolved source/factor profiles; (b) temporal variation of each resolved factor; (c) fractional contri
bution of each double PMF resolved factor to organic SA factors and black carbon. 
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and LD-4 (Fig. 4(c)). 
Secondary Chloride and the Zn-K-Br Rich factor, while are well 

correlated with their counterparts resolved with the elemental SA, both 
in terms of the source profile and temporal variation, double PMF at
tributes none of the organic emissions to these factors. This may be due 
to the unlikely event that these sources are not responsible for any 
organic emissions, or the tracers are impacted by some meteorological 
conditions or chemical transformations, rendering them unable to 
resolve the associated organic fragments. Thus, their source profile and 
temporal variation can be completely explained by their counterparts 
resolved by elemental SA discusses in section 3.1.3 and 3.1.4, 
respectively. 

The Dust Related factor, similar to the secondary chloride and Zn-K-Br 
rich factors, doesn’t contribute substantially to the organic fraction of 
PM2.5. The double PMF does highlight some minor contributions (<5% 
of species sum) of this source to LVOOA, BC, and BBOA-1; however, 
these contributions may result from contaminants common to dust- 
related sources, as discussed by, due to their interaction with multiple 
emission sources resulting in deposition of contaminants on dust-related 
PM. 

3.3.3. Power plant 
As discussed for the elemental SA in section 3.1.6, in case of the 

double PMF resolved power plants factor too is marked by S, As, and Ba. 
However, it is interesting to note that that the power plant factor ac
counts for 56% of LVOOA-2, 54% of SVOOA, 38% of BBOA-1, and 13% 
of BC. As discussed in section3.1.6, the sulfur content measured is mostly 
in the form of sulfate, which in turn is found to correlate well with 
LVOOA-2 up to LD-3, as discussed in section 3.2.4 (Fig. 3(c)). The 
fractional contribution of this source to LVOOA-2 (Fig. 4(c)) demon
strates that the power-plant emissions contribute significantly to total 
LVOOA-2 levels up to LD-2 (after which biomass burning dominates), 
justifying the appreciable correction of sulfate and LVOOA-2 up till LD-2 
and its deterioration thereafter. It is also interesting to note that the 
power plant source, while being responsible for a significant amount of 
LVOOA-2, which is usually associated with regionally transported of 
aged OA, is also found to contribute to around 54% of SVOOA, which is 
more often linked with local, or moderately aged OA. The authors feel 
further investigation through back trajectory analysis may aid in un
derstanding the origin of these source emissions to help understand the 
reason behind its significant contribution to both LVOOA-2 and SVOOA. 

As discussed in section 3.2.3, the inability of the ACSM to measure 
higher m/z fragments, especially PAHs, renders the PMF solution unable 
to resolve the CCOA or COA with certainty. The power plant emissions 
contributing to the BBOA-1 levels (Fig. 4(c)) indicates the possibility of 
BBOA-1 having a coal combustion related origin. 

3.3.4. Local coal combustion 
Similar to the elemental SA (section 3.1.7), the coupled SA coal 

combustion factor is dominated by Pb, accounting for more than 80% of 
total Pb. In terms of the organic content, the double PMF accounts for 
this factor to contribute to 52% of the total BBOA-1on average (Fig. 4 
(a)). The presence of BBOA-1 in the power plants factor discussed earlier 
indicated the possibility of CCOA origin of BBOA-1; the presence of 
BBOA-1 in the coal combustion factor further reinforces this hypothesis 
that BBOA-1 has a coal combustion related origin. The same can be 
reaffirmed through the high fractional contribution of the local coal 
combustion factor to the BBOA-1 levels (Fig. 4(c)). This observation also 
highlights another advantage of double PMF as being used to better 
resolved or identify ACSM based organic sources, even when other 
organic tracers are missing. Other than BBOA-1, 10% of total BC is also 
attributed to the local coal combustion source. 

3.3.5. Combustibles factor-1 
As discussed earlier, unlike the other coupled SA sources, the CF-1 

and LVOOA-dominated sources are marked by organic SA factors as 

tracers rather than the elemental markers. The CF-1 factor contributes to 
65% of HOA and 64% BBOA-2 along with 19% of BC, and 12% of S. The 
BC and sulfur content indicate some form of combustion, while both 
HOA and BBOA-2 signal towards the primary nature of the emissions 
associated with this source. The fractional contribution of the CF-1 
source (Fig. 4(c)) to various coupled factors indicates that the CF-1 
source supplemented the HOA resolved from organic SA during the 
lockdown, which prevented HOA from reducing sharply with plum
meting vehicular emissions. Based on the fractional contribution of 
these sources to BBOA-2 (Fig. 4(c)), the CF-1 source dominates the 
BBOA-2 levels up till eLD-2. As discussed in sections 3.2.2 and 3.2.3, 
both HOA and BBOA-2 may be related to cooking activities, which im
plies that the CF-1 source emissions may stem from cooking activities, 
waste burning, or some other form of combustion activity, however, due 
to the lack of a reliable/ well-accepted marker to identify the actual 
source of this factor, we continue to refer to as an CF-1 source. 

3.3.6. LVOOA-dominated 
Like the CF-1 factor, this factor is populated by organic markers and 

accounts for 87% of total LVOOA and 13% of SVOOA. Interestingly, the 
factor is independent of any elemental/organic factor except LVOOA-1. 
As discussed in section 3.2.4, LVOOA-1 displayed diurnal behavior 
similar to primary organic aerosols, and now the LVOOA-1 factor not 
considerably associating with any other organic or elemental marker as 
resolved by double PMF further supports the hypothesis of the increased 
O3 levels giving rise to increased LVOOA-1 levels in LD-4. 

In addition to further apportioning the organics PMF derived factors, 
the elemental tracers, also aid in apportioning black carbon to real world 
sources, via the double PMF. As discussed earlier in account of the 
double-PMF resolved vehicular emissions, the notable contribution of 
the vehicular emissions to BC and HOA during PLD and LD-4, allows us 
to interpret the good correlation between HOA and BC, during these 
periods and loss of correlation during other times. A recent work by Goel 
et al., (2021), discussed the variation of black carbon sources during the 
lockdown, utilizing the wavelength-based two-component Aethalometer 
model proposed by Sandradewi et al., (2008). The original work pro
posing double-PMF (Petit et al., 2014), too utilizes the Aethalometer 
model, derived sources as input to the second PMF, in the two staged 
double PMF. However, in case of the present study we note that the BC 
sources’ time variation derived using the Aethalometer model were 
highly correlated with each other (Pearson R > 0.9). Since the PMF 
technique is limited in its ability to resolve highly correlated input data 
(Ulbrich et al., 2009), we use total BC as input to the double PMF rather 
than the Aethalometer model derived BC fractions. The authors believe 
the use of the elemental tracers in the double PMF methodology, allows 
for an independent method to apportion BC; however, the comparison of 
the results with those of the two-component model will prospectively be 
explored in future works. 

4. Conclusions 

The COVID-19 lockdown resulted in an unprecedented decline in 
anthropogenic activities, which in turn led to a considerable reduction 
(~54%) in ambient PM2.5 levels. The detailed source apportionment 
results presented in this study reveal the varying impact of the lockdown 
on different sources contributing to the elemental and organic fractions 
of PM2.5. Source apportionment of elemental PM2.5 yielded seven source 
profiles; the vehicular emissions, coal combustion, and Zn-K-Br rich 
sources were severely impacted by the lockdown. However, the lock
down seemed to have minimal or no impact on biomass burning and 
dust-related sources. The dust-related factor displayed dependence on 
meteorological factors, while increased biomass burning emissions 
coincided with the crop burning season. The power plants-related 
elemental PM seems to be affected by both the lockdown and meteo
rological parameters. Interestingly, the secondary chloride factor 
observed elevated concentration peaks majorly from the north-west 
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direction and remained largely unaffected by the lockdown. 
The organics-only PMF resulted in 6 factors, i.e., SVOOA, HOA, two 

BBOA, and two LVOOA factors. The lockdown seems to have an 
appreciable effect on SVOOA factor concentrations with a reduction 
(86%) in eLD-1, followed by increased concentrations with relaxations 
in the lockdown. The fresh BBOA emissions (BBOA-1) decline following 
the lockdown, while the aged BBOA emissions(BBOA-2) rise, signaling 
intensified transport of BBOA related emissions from regional sources 
following the lockdown. HOA concentrations were marginally affected 
by the lockdown indicating sources other than vehicular emissions 
played a dominant role in HOA related emissions, contrary to the belief 
of HOA being dominated by vehicular emissions. The organic aerosol 
(OA) source apportionment also highlights a sharp rise in the LVOOA 
concentrations in LD-4 accompanied by a concomitant decay in con
centrations of all other resolved OA sources; this rise is attributed to the 
oxidation of primary OA due to high ozone concentrations. 

The double PMF implemented in the present study enabled much 
better interpretation of the temporal variation of the organic sources 
resolved by the organic SA, and successfully connected the elemental SA 
and organic SA results to give a complete picture of the impact of the 
lockdown on total PM2.5 rather than just one the organic and inorganic 
fractions individually. 

This is also the first study to quantify the impact of the COVID- 
induced lockdown on highly time-resolved sources of ambient PM2.5 
in India. These results have important implications for guiding future 
policies targeted and decreasing PM levels in not only Delhi but the 
entire IGP so that the actions are targeted on actual sources of emission, 
knowing the level of impact a particular source has on total PM levels. 
The results also highlight a prime concern for driving future emission 
control strategies, especially upcoming vehicular emission standards 
like Bharat Stage 6 (BS-VI), which may realize the low NOx, VOC-limited 
setting without a lockdown, and lead to an inadvertent rise in ozone and 
LVOOA. The use of double PMF demonstrated in this study has clear 
implications to improve interpretation of the sources of organic aerosols 
and black carbon, which can aid future work in this domain. 
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Buisson, C., Charron, A., André, M., Pasquier, A., Besombes, J.L., Jaffrezo, J.L., 
Wortham, H., Marchand, N., 2015. Near-highway aerosol and gas-phase 
measurements in a high-diesel environment. Atmos. Chem. Phys. 15 (8), 4373–4387. 
https://doi.org/10.5194/acp-15-4373-201510.5194/acp-15-4373-2015- 
supplement. 

Dhaka, S.K., Chetna, Kumar, V., Panwar, V., Dimri, A.P., Singh, N., Patra, P.K., 
Matsumi, Y., Takigawa, M., Nakayama, T., Yamaji, K., Kajino, M., Misra, P., 
Hayashida, S., 2020. PM2.5 diminution and haze events over Delhi during the 
COVID-19 lockdown period: an interplay between the baseline pollution and 
meteorology. Sci. Rep. 10 (1) https://doi.org/10.1038/s41598-020-70179-8. 

Duan, J., Tan, J., 2013. Atmospheric heavy metals and Arsenic in China: Situation, 
sources and control policies. Atmos. Environ. 74, 93–101. https://doi.org/10.1016/ 
j.atmosenv.2013.03.031. 

Dyke, P.H., Sutton, M., Wood, D., Marshall, J., 2007. Investigations on the effect of 
chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F 
releases from an internal combustion engine. Chemosphere 67 (7), 1275–1286. 
https://doi.org/10.1016/j.chemosphere.2006.12.010. 

Dzepina, K., Volkamer, R.M., Madronich, S., Tulet, P., Ulbrich, I.M., Zhang, Q., Cappa, C. 
D., Ziemann, P.J., Jimenez, J.L., 2009. Evaluation of recently-proposed secondary 
organic aerosol models for a case study in Mexico City. Atmos. Chem. Phys. 9 (15), 
5681–5709. https://doi.org/10.5194/acp-9-5681-200910.5194/acp-9-5681-2009- 
supplement. 

Fehsenfeld, F., 2004. Chapter 5, in: Howard McMurry, P., F. Shepherd, M., S. Vickery, J. 
(Eds.), Particulate Matter Science for Policy Makers: A NARSTO Assessment. 
Cambridge University Press. 

Finlayson-Pitts, B.J., Pitts, J.N., 1993. Atmospheric Chemistry of Tropospheric Ozone 
Formation: Scientific and Regulatory Implications. Air Waste 43 (8), 1091–1100. 
https://doi.org/10.1080/1073161X.1993.10467187. 

Fitch, J., 2019. Copper and Your Diesel Engine Oils [WWW Document]. Mach. Lubr. 
Noria Corp. URL www.machinerylubrication.com/Read/646/copper-diesel-engine 
-oil. 

Gani, S., Bhandari, S., Seraj, S., Wang, D.S., Patel, K., Soni, P., Arub, Z., Habib, G., 
Hildebrandt Ruiz, L., Apte, J.S., 2019. Submicron aerosol composition in the world’s 

C. Manchanda et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.envint.2021.106541
https://doi.org/10.1016/j.envint.2021.106541
https://doi.org/10.5194/acp-9-6633-200910.5194/acp-9-6633-2009-supplement
https://doi.org/10.5194/acp-9-6633-200910.5194/acp-9-6633-2009-supplement
https://doi.org/10.1016/j.atmosenv.2005.11.046
https://doi.org/10.1016/j.scitotenv.2020.139052
https://doi.org/10.1016/j.scitotenv.2020.139052
https://doi.org/10.3390/atmos7040058
https://doi.org/10.1002/9781444310603.ch1
https://doi.org/10.5094/APR.2011.036
https://doi.org/10.5094/APR.2011.036
https://doi.org/10.1016/j.envpol.2017.09.079
http://refhub.elsevier.com/S0160-4120(21)00166-5/h0045
http://refhub.elsevier.com/S0160-4120(21)00166-5/h0045
https://doi.org/10.1016/j.scitotenv.2014.03.138
https://doi.org/10.1016/j.scitotenv.2014.03.138
https://doi.org/10.5194/acp-10-5257-201010.5194/acp-10-5257-2010-supplement
https://doi.org/10.5194/acp-10-5257-201010.5194/acp-10-5257-2010-supplement
https://doi.org/10.5194/acp-15-4373-201510.5194/acp-15-4373-2015-supplement
https://doi.org/10.5194/acp-15-4373-201510.5194/acp-15-4373-2015-supplement
https://doi.org/10.1038/s41598-020-70179-8
https://doi.org/10.1016/j.atmosenv.2013.03.031
https://doi.org/10.1016/j.atmosenv.2013.03.031
https://doi.org/10.1016/j.chemosphere.2006.12.010
https://doi.org/10.5194/acp-9-5681-200910.5194/acp-9-5681-2009-supplement
https://doi.org/10.5194/acp-9-5681-200910.5194/acp-9-5681-2009-supplement
https://doi.org/10.1080/1073161X.1993.10467187
http://www.machinerylubrication.com/Read/646/copper-diesel-engine-oil
http://www.machinerylubrication.com/Read/646/copper-diesel-engine-oil


Environment International 153 (2021) 106541

14

most polluted megacity: the Delhi Aerosol Supersite study. Atmos. Chem. Phys. 19 
(10), 6843–6859. https://doi.org/10.5194/acp-19-6843-201910.5194/acp-19- 
6843-2019-supplement. 

Gerlofs-Nijland, M.E., Bokkers, B.G.H., Sachse, H., Reijnders, J.J.E., Gustafsson, M., 
Boere, A.J.F., Fokkens, P.F.H., Leseman, D.L.A.C., Augsburg, K., Cassee, F.R., 2019. 
Inhalation toxicity profiles of particulate matter: a comparison between brake wear 
with other sources of emission. Inhal. Toxicol. 31 (3), 89–98. https://doi.org/ 
10.1080/08958378.2019.1606365. 

Gianini, M.F.D., Gehrig, R., Fischer, A., Ulrich, A., Wichser, A., Hueglin, C., 2012. 
Chemical composition of PM10 in Switzerland: An analysis for 2008/2009 and 
changes since 1998/1999. Atmos. Environ. 54, 97–106. https://doi.org/10.1016/j. 
atmosenv.2012.02.037. 

Goel, V., Hazarika, N., Kumar, M., Singh, V., Thamban, N.M., Tripathi, S.N., 2021. 
Variations in Black Carbon concentration and sources during COVID-19 lockdown in 
Delhi. Chemosphere 270, 129435. https://doi.org/10.1016/j. 
chemosphere.2020.129435. 

Goldstein, I.S., 2018. Organic Chemicals from Biomass. CRC Press. 
Google LLC, 2020. Google COVID-19 Community Mobility Reports. 
Grigoratos, T., Martini, G., 2015. Brake wear particle emissions: a review. Environ. Sci. 

Pollut. Res. 22 (4), 2491–2504. https://doi.org/10.1007/s11356-014-3696-8. 
Gupta, A.K., Karar, K., Srivastava, A., 2007. Chemical mass balance source 

apportionment of PM10 and TSP in residential and industrial sites of an urban region 
of Kolkata, India. J. Hazard. Mater. 142 (1-2), 279–287. https://doi.org/10.1016/j. 
jhazmat.2006.08.013. 

Gupta, I., Salunkhe, A., Kumar, R., 2012. Source apportionment of PM10 by positive 
matrix factorization in urban area of Mumbai, India. Sci. World J. 2012 https://doi. 
org/10.1100/2012/585791. 

Hao, L.Q., Kortelainen, A., Romakkaniemi, S., Portin, H., Jaatinen, A., Leskinen, A., 
Komppula, M., Miettinen, P., Sueper, D., Pajunoja, A., Smith, J.N., Lehtinen, K.E.J., 
Worsnop, D.R., Laaksonen, A., Virtanen, A., 2014. Atmospheric submicron aerosol 
composition and particulate organic nitrate formation in a boreal forestland–urban 
mixed region. Atmos. Chem. Phys. 14 (24), 13483–13495. https://doi.org/10.5194/ 
acp-14-13483-201410.5194/acp-14-13483-2014-supplement. 

Hien, P.D., Binh, N.T., Truong, Y., Ngo, N.T., Sieu, L.N., 2001. Comparative receptor 
modelling study of TSP, PM2 and PM2-10 in Ho Chi Minh City. Atmos. Environ. 35 
(15), 2669–2678. https://doi.org/10.1016/S1352-2310(00)00574-4. 

Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K.R., 
Slowik, J.G., Platt, S.M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S.M., Bruns, E.A., 
Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle- 
Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I.E., 
Prévôt, A.S.H., 2014. High secondary aerosol contribution to particulate pollution 
during haze events in China. Nature 514 (7521), 218–222. https://doi.org/10.1038/ 
nature13774. 

Jaiprakash, Singhai, A., Habib, G., Raman, R.S., Gupta, T., 2017. Chemical 
characterization of PM1.0 aerosol in Delhi and source apportionment using positive 
matrix factorization. Environ. Sci. Pollut. Res. 24 (1), 445–462. https://doi.org/ 
10.1007/s11356-016-7708-8. 

Jayamurugan, R., Kumaravel, B., Palanivelraja, S., Chockalingam, M.P., 2013. Influence 
of Temperature, Relative Humidity and Seasonal Variability on Ambient Air Quality 
in a Coastal Urban Area. Int. J. Atmos. Sci. 2013, 1–7. https://doi.org/10.1155/ 
2013/264046. 

Jethva, H., Torres, O., Field, R.D., Lyapustin, A., Gautam, R., Kayetha, V., 2019. 
Connecting Crop Productivity, Residue Fires, and Air Quality over Northern India. 
Sci. Rep. 9 (1) https://doi.org/10.1038/s41598-019-52799-x. 

Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., 
DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I. 
M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., 
Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., 
Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., 
Dunlea, J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., 
Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., 
Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., 
Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J. 
T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., 
Kolb, C.E., Baltensperger, U., Worsnop, D.R., 2009. Evolution of Organic Aerosols in 
the Atmosphere. Science (80-) 326 (5959), 1525–1529. https://doi.org/10.1126/ 
science:1180353. 

Julander, A., Lundgren, L., Skare, L., Grandér, M., Palm, B., Vahter, M., Lidén, C., 2014. 
Formal recycling of e-waste leads to increased exposure to toxic metals: An 
occupational exposure study from Sweden. Environ. Int. 73, 243–251. https://doi. 
org/10.1016/j.envint.2014.07.006. 

Khare, P., Baruah, B.P., 2010. Elemental characterization and source identification of 
PM2.5 using multivariate analysis at the suburban site of North-East India. Atmos. 
Res. 98 (1), 148–162. https://doi.org/10.1016/j.atmosres.2010.07.001. 

Kothai, P., Saradhi, I.V., Pandit, G.G., Markwitz, A., Puranik, V.D., 2011. Chemical 
Characterization and Source Identification of Particulate Matter at an Urban Site of 
Navi Mumbai, India. Aerosol Air Qual. Res. 11 (5), 560–569. https://doi.org/ 
10.4209/aaqr.2011.02.0017. 

Kumar, P., Hama, S., Omidvarborna, H., Sharma, A., Sahani, J., Abhijith, K.V., Debele, S. 
E., Zavala-Reyes, J.C., Barwise, Y., Tiwari, A., 2020. Temporary reduction in fine 
particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 
lockdown in Indian cities. Sustain. Cities Soc. 62, 102382. https://doi.org/10.1016/ 
j.scs.2020.102382. 

Kumari, P., Toshniwal, D., 2020. Impact of lockdown measures during COVID-19 on air 
quality– A case study of India. Int. J. Environ. Health Res. 00, 1–8. https://doi.org/ 
10.1080/09603123.2020.1778646. 

LANCE FIRMS, 2020. MODIS Collection 6 [WWW Document]. NASA’s Earth Sci. Data 
Inf. Syst. https://doi.org/10.5067/firms/modis/mcd14dl.nrt.006. 

Lee, S., Liu, W., Wang, Y., Russell, A.G., Edgerton, E.S., 2008. Source apportionment of 
PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the 
southeastern United States. Atmos. Environ. 42 (18), 4126–4137. https://doi.org/ 
10.1016/j.atmosenv.2008.01.025. 

Lee, T., Sullivan, A.P., Mack, L., Jimenez, J.L., Kreidenweis, S.M., Onasch, T.B., 
Worsnop, D.R., Malm, W., Wold, C.E., Hao, W.M., Collett, J.L., 2010. Chemical 
Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open 
Burning of Wildland Fuels. Aerosol Sci. Technol. 44 (9), i–v. https://doi.org/ 
10.1080/02786826.2010.499884. 

Li, J., Liu, Q., Li, Y., Liu, T., Huang, D., Zheng, J., Zhu, W., Hu, M., Wu, Y., Lou, S., 
Hallquist, Å.M., Hallquist, M., Chan, C.K., Canonaco, F., Prévôt, A.S.H., Fung, J.C.H., 
Lau, A.K.H., Yu, J.Z., 2019. Characterization of Aerosol Aging Potentials at Suburban 
Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) 
Reactor and an Aerosol Mass Spectrometer. J. Geophys. Res. Atmos. 124 (10), 
5629–5649. https://doi.org/10.1029/2018JD029904. 
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